Quantitative Aptitude Quiz for Bank Exams Series, Simplifications, Quadratic Equations
Directions (1
- 5): What will come in place of question mark (?) in the following questions?
1. 17/1276 x
326656 + ? = 9938
a) 5586
b) 4352
c) 5685
d) 4532
e) None
of these
a) 25
b) 27
c) 29
d) 31
e) None
of these
3. (9.979)^3
- (23.99)^2 + (1.99)^5 = ?
a)
350
b)
490
c)
390
d)
420
e)
450
4. (18/4)^2
* (455/19) / 61/799 = ?
a)
6320
b)
6350
c)
6400
d)
6430
e)
6490
5. 4. 150%
of 950/25 - 43 = ?% of 1400/25
a)
25
b)
55
c)
15
d)
20
e)
35
Directions (6
-10) : In each of these questions a number series is given. In each series only
one number is wrong. Find out the wrong number.
6.729 1331
2497 3375 4913
a) 729
b) 1331
c) 3375
d) 2497
e) 4913
7. 8 8.5
11.5 14 17
a) 8
b) 8.5
c) 11.5
d) 14
e) 17
8. 1 2
6 46 1806
3263442
a) 6
b) 46
c) 1806
d) 3263442
e) None
of these
9. 199 176
195 180 190
184 187
a)
180
b)
190
c)
184
d)
187
e)
199
10. 1 5
2 30 28
2620
a) 5
b)
2620
c)
28
d)
30
e) 2
11. For
which of the following equations the value of X is less than or equal to Y (X≤
Y)
I. X2– 4X + 3= 0; Y2
– 8Y + 15 = 0
II. 3X2 – 19X + 28= 0; 4Y2
– 29Y + 45 = 0
III. x2
– (16)2 = (23)2 – 56; y1/3 – 55 + 376 = (18)2
a) Only
I
b) Only
II
c) Both
I and III
d) Both
II and III
e) All
follow
12. For which of the following equations the
value of X is greater than Y(X>Y)
I. 3X2+23X + 44 = 0; 3Y2 + 20Y +33 =
0
II. 3X2+29
X +56 = 0; 2Y2 + 15Y + 25 = 0
III. 3X2–
16X + 21 = 0; 3Y2 – 28Y + 65 = 0
a) Only
I
b) Only
II
c) Both
I and III
d) Both
II and III
e) None
follow
Directions
(13 - 15): In the following questions, two equations numbered I and II are
given. You have to solve both the equations and mark the appropriate answer.
a) X > Y
b) X < Y
c) X ≥ Y
d) X ≤ Y
e) X = Y or relation cannot be
established
13. 2x² – 3x
– 20 = 0
2y² – 18y +
40 = 0
14. I.
2x^2-11x+12=0
II.
2y^2-19y+44=0
15. I.
2x^2+21x+10=0
II.
3y^2+13y+14=0
Answers:
1. A)
2. C)
3. E)
4. A)
5. A)
6. D)
The series is 9^3, 11^3, 13^3, 15^3,17^3..
Hence, there should be 2197 in place of 2497
7. B)
The series is 8 + 1.5 = 9.5, 9.5 + 2 = 11.5, 11.5+2.5 = 14,
14 + 3 = 17
Hence, there should be 9.5 in place of 8.5
8. E) The series
is: 1 * 1 + 1 = 2, 2 * 2 + 2 = 6, 6 * 6 + 6 = 42, 42 * 42 + 42 = 1806,
1806 * 1806 + 1806 = 3263442.
9. B) The series is, -23, +19, -15, +11,
-7, +3, ....
10. C) The series is, *1^2 + 4, *2 - 8,
*3^2+12, *4-16, ....
11. C) From I, (x-3)(x-1) = 0 X=1,3
(y-5)(y-3) = 0 Y = 5,3
From III, x2 – (16)2 = (23)2 –
56
x2 = 729
x = ± 27
y1/3 – 55 + 376 = (18)2
y = 33 = 27
12. E) From I, X = -4, -11/3; Y = -3, -11/3
From II, X=-7, -8/3; Y = -5, -5/2
From III,X= 3,7/3; Y = 5,13/3
13. D) 2x² – 3x – 20 = 0
x = – 2.5, 4
y² + 9y + 18 = 0
y = 4, 5
14. B) I. 2x^2-11x+12=0
⇒ 2x^2-8x-3x+12=0
⇒ 2x(x-4)-3(x-4)=0
⇒ (2x-3)(x-4)=0
⇒ x=4 or 3/2
II. 2y^2-19y+44=0
⇒ 2y^2-8y-11y+44=0
⇒ 2y(y-4)-11(y-4)=0
⇒ (y-4)(2y-11)=0
⇒ y = 4 or 11/2
Hence, x ≤ y
15. E) I. 2x^2+21x+10=0
⇒ 2x^2+20x+x+10=0
⇒ 2x(x+10)+1(x+10)=0
⇒ (2x+1)(x+10)=0
⇒ x=(-1)/2 or -10
II. 3y^2+13y+14=0
⇒ 3y^2+6y+7y+14=0
⇒ 3y(y+2)+7(y+2)=0
⇒ (3y+7)(y+2)=0
⇒ y=-2 or y=(-7)/3
Hence, relationship between x and y cannot be
established